Bridges in Mathematics

 Grade 5 Unit 7
Division \& Decimals

In this unit your child will:

- Multiply and divide multi-digit numbers
- Perform addition, subtraction, multiplication, and division with fractions

Your child will learn and practice these skills by solving problems like those shown below. Keep this sheet for reference when you're helping with homework. Use the free Math Vocabulary Cards app for additional support: mathlearningcenter.org/apps.

Rashawn and his little brother Devante both like to run. On Saturday Rashawn ran $12 \frac{1}{4}$ miles. Devante ran $\frac{1}{3}$ as far as Rashawn. How many miles did Devante run?
$4 \frac{1}{12}$ of a mile
$\frac{1}{3}$ of 12 is 4
$\frac{1}{3}$ of $\frac{1}{4}$ is $\frac{1}{12}$
I added 4 and $\frac{1}{12}$ to get $4 \frac{1}{12}$ miles.
Solve each equation.
$1 \frac{3}{5}-\frac{7}{12}=1 \frac{36}{60}-\frac{35}{60}=1 \frac{1}{60}$
$\frac{5}{9}+2 \frac{2}{3}=\frac{5}{9}+2 \frac{6}{9}=2 \frac{11}{9}=3 \frac{2}{9}$
$\frac{2}{3} \times \frac{3}{4}=\frac{6}{12}=\frac{1}{2}$
$\frac{1}{4} \div 6=\frac{1}{24}$

Solve. Show your work.
$1048 \div 37$

Students might approach this problem by thinking about multiplying the two fractions or by dividing $12 \frac{1}{4}$ by 3 . Both are mathematically sound and reasonable ways to think about the problem situation. In this example, the student thought separately about the whole number (12) and fraction part $\left(\frac{1}{4}\right)$ of the total, divided each by 3 , and added the results to calculate $\frac{1}{3}$ of $12 \frac{1}{4}$.

These problems represent what fifth graders are expected to be able to do in terms of computation with fractions. Note that we don't expect fifth graders to divide fractions by fractions. They are, however, expected to be able to divide unit fractions by whole numbers and vice versa, as shown in the fourth equation. A unit fraction is a fraction with 1 in the numerator (top number).

This algorithm for dividing multi-digit numbers is quite similar to the more familiar standard algorithm, but it offers students a bit more flexibility because students can pick and choose which multiples they want to work with and can use each one more than one time. For example, they subtract 370 twice and work only with $37 \times 10,37 \times$ 5 , and 37×2, which are all quite straightforward to compute.

FREQUENTLY ASKED QUESTIONS ABOUT UNIT 7

Q: Why do students learn an algorithm for long division that is different from the method I learned?

A: The way many people learned to do long division is accurate, elegant, and reliable.
However, it is not the only way to divide large numbers, and we find that the procedure can become tedious when students struggle to determine the maximum number of times the divisor goes into the part of the dividend they are dividing. For example, to solve the problem shown at right, students must figure out how many times 26 goes into first 96 and then 182. Such calculations are tedious for even those students who are skilled in mental multiplication. The method students are taught in this unit allows
 them to use the multiplication combinations for the divisor that come quickly to them. In many cases, it is more efficient than the way many of us were taught. Have your child help you try it with a few problems like the one shown here $(962 \div 26)$ and others.

